laboratoryequipment:

Brain Blocks Information to Form MemoriesEvery activity in the brain involves the transfer of signals between neurons. Frequently, as many as one thousand signals rain down on a single neuron simultaneously. To ensure that precise signals are delivered, the brain possesses a sophisticated inhibitory system. Stefan Remy and colleagues at the German Center for Neurodegenerative Diseases and the Univ. Bonn have illuminated how this system works. “The system acts like a filter, only letting the most important impulses pass,” explains Remy. “This produces the targeted neuronal patterns that are indispensible for long-term memory storage.”How does this refined control system work? How can inhibitory signals produce precise output signals? This was the question investigated by Remy and his colleagues. Scientists have known for some time that this inhibitory system is crucial for the learning process. For instance, newest research has shown that this system breaks down in Alzheimer’s patients. Remy and his team investigated the nerve cells of the hippocampus, a region of the brain that plays a crucial role in memory formation.Read more: http://www.laboratoryequipment.com/news/2012/09/brain-blocks-information-form-memories



Check out the third to last paragraph. Confirmation that studying something new without distraction is the best way to create “new connections” in our brains.

laboratoryequipment:

Brain Blocks Information to Form Memories

Every activity in the brain involves the transfer of signals between neurons. Frequently, as many as one thousand signals rain down on a single neuron simultaneously. To ensure that precise signals are delivered, the brain possesses a sophisticated inhibitory system. Stefan Remy and colleagues at the German Center for Neurodegenerative Diseases and the Univ. Bonn have illuminated how this system works. “The system acts like a filter, only letting the most important impulses pass,” explains Remy. “This produces the targeted neuronal patterns that are indispensible for long-term memory storage.”

How does this refined control system work? How can inhibitory signals produce precise output signals? This was the question investigated by Remy and his colleagues. Scientists have known for some time that this inhibitory system is crucial for the learning process. For instance, newest research has shown that this system breaks down in Alzheimer’s patients. Remy and his team investigated the nerve cells of the hippocampus, a region of the brain that plays a crucial role in memory formation.

Read more: http://www.laboratoryequipment.com/news/2012/09/brain-blocks-information-form-memories

Check out the third to last paragraph. Confirmation that studying something new without distraction is the best way to create “new connections” in our brains.